第530章 折腾自己不如折腾别人

如果计算失败次数的话,侯进力已经数不过来自己失败了多少次了。

最初他只是在实验室制备SG-1材料时,被实验意外产生的废料吸引了兴趣。

比起一般的石墨材料而言,那种废料摸起来的手感实在是有些特别。

以上这些,都是由他在实验中积累的经验所得出的结论,而最后在系统性的研究中,他发现了这废料之所以特别的原因,是愿与其表面凝聚着的一层多孔网状气凝胶隔层。

说实话,这个结果多少让他有些失望。毕竟由石墨烯制备的多孔网状气凝胶并非是什么新颖的研究成果,甚至可以说类似的材料在部分电极材料中已经有所应用。

然而,作为人生中的第一次独立申请开题的研究课题,同样也是来到这座研究所之后申请的第一个课题,他不愿就这么简单的放弃了。

于是在发现这种多孔网状气凝胶本身没有什么特别价值的情况下,他继续对其在其它分散介质、分散相中的表现,以及与其他材料进行复合所展现出来的各项性质进行了深入研究。

这个过程是令人绝望的。

甚至绝望到了令他怀疑人生。

所幸最后一次,他没有放弃。

用这种由石墨烯制备的多孔网状气凝胶作为增韧剂与碳化硅陶瓷结合,发挥出了意料之外的奇效!

作为增韧剂本身,这种多孔网状气凝胶的性能并不算优越,至少比起其他同类材料来说是如此。

然而其在热学性能上的表现,却是令他兴奋的忍不住在实验室里喊了出来。

迫不及待地将实验结果写成了报告,侯进力将它交到了所里。

没有经过太多的波折,这份实验报告在他上交之后的第二天,便摆在了陆舟的办公桌上……

……

虽说许多有趣的发明都诞生于偶然,但这份偶然也来的太意外了点。

看着手中的这份实验报告,陆舟脸上浮现了感兴趣的神色。

“有点意思。”

报告内容分为两部分。

第一部分是关于这种多孔网状气凝胶的制备。

选择氧化石墨烯作为基础原料,配制1~2mg/ml的氧化石墨烯溶液,加入还原剂,之后搅拌5~10分钟,令其在90?160℃下还原30-45分钟,立即取出放入冷冻箱中冷冻4小时,取出解冻后继续高温下还原5小时,最后水洗数次并干燥……便可以得到这种多孔网状气凝胶。

至于第二部分,便是整个实验的关键内容了。

在实验中,通过原子层沉积的过程,侯进力的研究团队将这种由石墨烯材料制备的多孔网状气凝胶化学键合到SIC陶瓷层上,并由此得到了一种结构特殊的石墨烯-陶瓷复合材料。

从微观结构上来看,这种材料可以抽象成陶瓷层的中间连接的蜂窝状的石墨烯层,而这些蜂窝状的石墨烯分子,与SiC分子之间紧密地键合在一起。

根据耐高温测试得出的实验结果,在无氧环境下,这种特殊的石墨烯-陶瓷复合材料,能够承受3200度的高温!

并且,不只是其优异的耐高温性能,这种材料的热膨胀系数较小,且在导热性能上具有显著的各向异性。

即,热能即易于沿截面方向传递,而不易于在垂直截面方向上传递!

除此之外,包括抗拉强度和抗压强度,还有对于热应力的抗性等等。

从这些数据上来看,这项材料都可以说是相当的出色了。

看着陆舟脸上饶有兴趣的神色,杨旭开口问道:“这是你需要的那种材料?”

“不好说,”放下了手中的这份实验报告,陆舟靠在了办公椅上,“不过这份报告,倒是给我提供了一条思路。”

杨旭:“思路?”

“没错,”陆舟点了点头,思索了片刻之后,继续说道,“最开始我主观的认为陶瓷材料不适合用于第一壁,因为其散热性能太差,但从另一个角度考虑,这种垂直于界面的热传递性能,反而小一点要好。”

杨旭:“为什么这么说?”

“因为液锂中子回收系统,”陆舟笑了笑,继续说道,“以碳纤维复合材料的导热性能,我们还得考虑在碳纤维复合材料与液锂之间添加一道隔热层,否则三千度以上的工作温度,稍有不慎就把我们用来回收中子的液氦层给气化了。”

两种材料在工作温度上的差异,可以说是整个反应堆工程中的核心难点之一了。

导热性能太弱了不行,太强了也不好,从这一点来看,碳纤维稍显得有些过犹不及了。

相比之下,这种新材料在热学性能上的各向异性,表现就相当突出了。适当的削弱热能在垂直截面方向上的传递,能给外部冷却装置留出足够的缓冲时间。

至于结构材料的散热,也可以通过“向结构内部插.入导热管,将沿截面方向传递的热量导出”的方法来解决。

虽然对于聚变工程并不了解,但陆舟解释的还算通俗,杨旭立刻明白了他的意思。

不过,虽然热力学问题基本解决了,但这里还有个更关键的问题……

“抗中子辐照能力呢?这才是最关键的吧。”

听到这句话,陆舟叹了口气:“你说的对,这才是问题的关键。虽然这材料各方面来看都还算合适,但抗中子辐照能力……具体行不行还是得试一试才知道。”

无论是碳化硅还是石墨烯,其中碳元素和硅元素的原子核还是很稳定的,C-Si共价键也远比金属键稳定。与此同时,两种材料对于中子束的透过性也相当可观。

然而,理论上是这样的。

但实际情况下,中子辐照对于材料的破坏并不仅仅只是原子嬗变,和对内部化学键的破坏,还有最纯粹的物理结构上的破坏。

而后者,靠理论分析基本是没用的,只有拿到实验中才能得出结论。

只是麻烦的是……

这玩意儿根本没法试。

杨旭笑容有些苦涩,委婉地说道:“这实验怕是不太好做。”

抗中子辐照性能检测是材料学中最难做的一项,没有之一。

一般的抗辐照实验都还好,用α粒子轰击铍核便能放出中子。

甚至于可以说,可控聚变堆第一壁材料的研究之所以难以进行,最重要的原因便是找不到一个可以对材料进行抗辐照测试的设备。

用14MeV的中子不断轰击样品,这样的实验设备上哪儿找去?

一般的中子源,根本达不到这个量级。

哪怕是去大亚湾,以核裂变核电站的辐照等级,也和聚变反应的辐照等级差了整整两个数量级!

至于加速器……

那就更扯淡了,还没听说谁能直接加速中子的。如果谁真做到了,只怕整个理论物理学界都得叫他爸爸。

至于间接加速(氘核法)倒是有,但实际上获得中子的能量,还不如直接拿α粒子去射铍金属箔。前者唯一的优势,也仅仅只是在产生中子束的方向上稍微稳定些了。

想到这里,陆舟也有些犯了难,食指在桌子上轻轻敲着,心中权衡了起来。

再让STAR装置“勉强”一次?

理论上不是不行。

可这做一次实验得罢工一个月,代价会不会太大了点儿?

毕竟这仿星器装置,国内目前也就这么一台。

核工业集团的专家们还在研究着如何仿制,要是把这唯一的一台设备给折腾坏了,那可就玩脱了。

然而就在这时,陆舟脑中忽然灵光一闪,伸手拍了下额头。

MMP!

光想着怎么折腾自己的仿星器了,怎么就把托卡马克给忘了呢。

脉冲点火虽然约束时间不长,但特么的好歹也能点火啊!

仿星器国内虽然只有一台,但托卡马克装置还是很多的……